Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1012122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558079

RESUMO

Lyme disease is a tick-borne infection caused by the spirochete Borrelia (Borreliella) burgdorferi. Borrelia species have highly fragmented genomes composed of a linear chromosome and a constellation of linear and circular plasmids some of which are required throughout the enzootic cycle. Included in this plasmid repertoire by almost all Lyme disease spirochetes are the 32-kb circular plasmid cp32 prophages that are capable of lytic replication to produce infectious virions called ϕBB-1. While the B. burgdorferi genome contains evidence of horizontal transfer, the mechanisms of gene transfer between strains remain unclear. While we know that ϕBB-1 transduces cp32 and shuttle vector DNA during in vitro cultivation, the extent of ϕBB-1 DNA transfer is not clear. Herein, we use proteomics and long-read sequencing to further characterize ϕBB-1 virions. Our studies identified the cp32 pac region and revealed that ϕBB-1 packages linear cp32s via a headful mechanism with preferential packaging of plasmids containing the cp32 pac region. Additionally, we find ϕBB-1 packages fragments of the linear chromosome and full-length plasmids including lp54, cp26, and others. Furthermore, sequencing of ϕBB-1 packaged DNA allowed us to resolve the covalently closed hairpin telomeres for the linear B. burgdorferi chromosome and most linear plasmids in strain CA-11.2A. Collectively, our results shed light on the biology of the ubiquitous ϕBB-1 phage and further implicates ϕBB-1 in the generalized transduction of diverse genes and the maintenance of genetic diversity in Lyme disease spirochetes.


Assuntos
Bacteriófagos , Borrelia burgdorferi , Doença de Lyme , Humanos , Borrelia burgdorferi/genética , Bacteriófagos/genética , Plasmídeos/genética , Doença de Lyme/genética , Genômica , DNA
2.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38260690

RESUMO

Lyme disease is a tick-borne infection caused by the spirochete Borrelia (Borreliella) burgdorferi. Borrelia species have highly fragmented genomes composed of a linear chromosome and a constellation of linear and circular plasmids some of which are required throughout the enzootic cycle. Included in this plasmid repertoire by almost all Lyme disease spirochetes are the 32-kb circular plasmid cp32 prophages that are capable of lytic replication to produce infectious virions called ϕBB-1. While the B. burgdorferi genome contains evidence of horizontal transfer, the mechanisms of gene transfer between strains remain unclear. While we know that ϕBB-1 transduces cp32 and shuttle vector DNA during in vitro cultivation, the extent of ϕBB-1 DNA transfer is not clear. Herein, we use proteomics and long-read sequencing to further characterize ϕBB-1 virions. Our studies identified the cp32 pac region and revealed that ϕBB-1 packages linear cp32s via a headful mechanism with preferentially packaging of plasmids containing the cp32 pac region. Additionally, we find ϕBB-1 packages fragments of the linear chromosome and full-length plasmids including lp54, cp26, and others. Furthermore, sequencing of ϕBB-1 packaged DNA allowed us to resolve the covalently closed hairpin telomeres for the linear B. burgdorferi chromosome and most linear plasmids in strain CA-11.2A. Collectively, our results shed light on the biology of the ubiquitous ϕBB-1 phage and further implicates ϕBB-1 in the generalized transduction of diverse genes and the maintenance of genetic diversity in Lyme disease spirochetes.

3.
Mol Microbiol ; 121(1): 116-128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38038061

RESUMO

Quorum sensing, a bacterial signaling system that coordinates group behaviors as a function of cell density, plays an important role in regulating viral (phage) defense mechanisms in bacteria. The opportunistic pathogen Pseudomonas aeruginosa is a model system for the study of quorum sensing. P. aeruginosa is also frequently infected by Pf prophages that integrate into the host chromosome. Upon induction, Pf phages suppress host quorum sensing systems; however, the physiological relevance and mechanism of suppression are unknown. Here, we identify the Pf phage protein PfsE as an inhibitor of Pseudomonas Quinolone Signal (PQS) quorum sensing. PfsE binds to the host protein PqsA, which is essential for the biosynthesis of the PQS signaling molecule. Inhibition of PqsA increases the replication efficiency of Pf virions when infecting a new host and when the Pf prophage switches from lysogenic replication to active virion replication. In addition to inhibiting PQS signaling, our prior work demonstrates that PfsE also binds to PilC and inhibits type IV pili extension, protecting P. aeruginosa from infection by type IV pili-dependent phages. Overall, this work suggests that the simultaneous inhibition of PQS signaling and type IV pili by PfsE may be a viral strategy to suppress host defenses to promote Pf replication while at the same time protecting the susceptible host from competing phages.


Assuntos
Bacteriófagos , Pseudomonas aeruginosa , Quinolonas , Pseudomonas aeruginosa/genética , Bacteriófagos/metabolismo , Transdução de Sinais , Percepção de Quorum/genética , Replicação Viral , Proteínas de Bactérias/metabolismo
4.
bioRxiv ; 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38014273

RESUMO

Pseudomonas aeruginosa is an opportunistic bacterial pathogen that commonly causes medical hardware, wound, and respiratory infections. Temperate filamentous Pf phages that infect P. aeruginosa impact numerous bacterial virulence phenotypes. Most work on Pf phages has focused on strain Pf4 and its host P. aeruginosa PAO1. Expanding from Pf4 and PAO1, this study explores diverse Pf strains infecting P. aeruginosa clinical isolates. We describe a simple technique targeting the Pf lysogeny maintenance gene, pflM (PA0718), that enables the effective elimination of Pf prophages from diverse P. aeruginosa hosts. This study also assesses the effects different Pf phages have on host quorum sensing, biofilm formation, virulence factor production, and virulence. Collectively, this research not only introduces a valuable tool for Pf prophage elimination from diverse P. aeruginosa isolates, but also advances our understanding of the complex relationship between P. aeruginosa and filamentous Pf phages.

5.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37662248

RESUMO

Quorum sensing, a bacterial signaling system that coordinates group behaviors as a function of cell density, plays an important role in regulating viral (phage) defense mechanisms in bacteria. The opportunistic pathogen Pseudomonas aeruginosa is a model system for the study of quorum sensing. P. aeruginosa is also frequently infected by Pf prophages that integrate into the host chromosome. Upon induction, Pf phages suppress host quorum sensing systems; however, the physiological relevance and mechanism of suppression are unknown. Here, we identify the Pf phage protein PfsE as an inhibitor of Pseudomonas Quinolone Signal (PQS) quorum sensing. PfsE binds to the host protein PqsA, which is essential for the biosynthesis of the PQS signaling molecule. Inhibition of PqsA increases the replication efficiency of Pf virions when infecting a new host and when the Pf prophage switches from lysogenic replication to active virion replication. In addition to inhibiting PQS signaling, our prior work demonstrates that PfsE also binds to PilC and inhibits type IV pili extension, protecting P. aeruginosa from infection by type IV pili-dependent phages. Overall, this work suggests that the simultaneous inhibition of PQS signaling and type IV pili by PfsE may be a viral strategy to suppress host defenses to promote Pf replication while at the same time protecting the susceptible host from competing phages.

6.
PLoS Pathog ; 19(2): e1010925, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36800381

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa PAO1 is infected by the filamentous bacteriophage Pf4. Pf4 virions promote biofilm formation, protect bacteria from antibiotics, and modulate animal immune responses in ways that promote infection. Furthermore, strains cured of their Pf4 infection (ΔPf4) are less virulent in animal models of infection. Consistently, we find that strain ΔPf4 is less virulent in a Caenorhabditis elegans nematode infection model. However, our data indicate that PQS quorum sensing is activated and production of the pigment pyocyanin, a potent virulence factor, is enhanced in strain ΔPf4. The reduced virulence of ΔPf4 despite high levels of pyocyanin production may be explained by our finding that C. elegans mutants unable to sense bacterial pigments through the aryl hydrocarbon receptor are more susceptible to ΔPf4 infection compared to wild-type C. elegans. Collectively, our data support a model where suppression of quorum-regulated virulence factors by Pf4 allows P. aeruginosa to evade detection by innate host immune responses.


Assuntos
Inovirus , Fagos de Pseudomonas , Animais , Pseudomonas aeruginosa , Caenorhabditis elegans/microbiologia , Piocianina , Percepção de Quorum , Fatores de Virulência , Biofilmes , Antibacterianos/farmacologia , Proteínas de Bactérias
7.
Proc Natl Acad Sci U S A ; 120(9): e2216430120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802441

RESUMO

Monitoring the extracellular environment for danger signals is a critical aspect of cellular survival. However, the danger signals released by dying bacteria and the mechanisms bacteria use for threat assessment remain largely unexplored. Here, we show that lysis of Pseudomonas aeruginosa cells releases polyamines that are subsequently taken up by surviving cells via a mechanism that relies on Gac/Rsm signaling. While intracellular polyamines spike in surviving cells, the duration of this spike varies according to the infection status of the cell. In bacteriophage-infected cells, intracellular polyamines are maintained at high levels, which inhibits replication of the bacteriophage genome. Many bacteriophages package linear DNA genomes and linear DNA is sufficient to trigger intracellular polyamine accumulation, suggesting that linear DNA is sensed as a second danger signal. Collectively, these results demonstrate how polyamines released by dying cells together with linear DNA allow P. aeruginosa to make threat assessments of cellular injury.


Assuntos
Bacteriófagos , Poliaminas , Bacteriófagos/genética , Bactérias , Pseudomonas aeruginosa , DNA
8.
Cell Host Microbe ; 31(1): 3-5, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36634621

RESUMO

Phage-inducible chromosomal islands (PICIs) steal structural proteins from helper phages. In two related studies, Penadés and coworkers reveal that PICIs are not parasites but mutualists. Some PICIs mobilize defense systems that restrict niche competitors, while other PICIs encode their own capsids and steal helper phage tails without affecting their fitness.


Assuntos
Bacteriófagos , Ilhas Genômicas , Bacteriófagos/genética , Capsídeo
9.
mBio ; 13(1): e0244121, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35038902

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes infections in a variety of settings. Many P. aeruginosa isolates are infected by filamentous Pf bacteriophage integrated into the bacterial chromosome as a prophage. Pf virions can be produced without lysing P. aeruginosa. However, cell lysis can occur during superinfection, which occurs when Pf virions successfully infect a host lysogenized by a Pf prophage. Temperate phages typically encode superinfection exclusion mechanisms to prevent host lysis by virions of the same or similar species. In this study, we sought to elucidate the superinfection exclusion mechanism of Pf phage. Initially, we observed that P. aeruginosa that survive Pf superinfection are transiently resistant to Pf-induced plaquing and are deficient in twitching motility, which is mediated by type IV pili (T4P). Pf utilize T4P as a cell surface receptor, suggesting that T4P are suppressed in bacteria that survive superinfection. We tested the hypothesis that a Pf-encoded protein suppresses T4P to mediate superinfection exclusion by expressing Pf proteins in P. aeruginosa and measuring plaquing and twitching motility. We found that the Pf protein PA0721, which we termed Pf superinfection exclusion (PfsE), promoted resistance to Pf infection and suppressed twitching motility by binding the T4P protein PilC. Because T4P play key roles in biofilm formation and virulence, the ability of Pf phage to modulate T4P via PfsE has implications in the ability of P. aeruginosa to persist at sites of infection. IMPORTANCE Pf bacteriophage (phage) are filamentous viruses that infect Pseudomonas aeruginosa and enhance its virulence potential. Pf virions can lyse and kill P. aeruginosa through superinfection, which occurs when an already infected cell is infected by the same or similar phage. Here, we show that a small, highly conserved Pf phage protein (PA0721, PfsE) provides resistance to superinfection by phages that use the type IV pilus as a cell surface receptor. PfsE does this by inhibiting assembly of the type IV pilus via an interaction with PilC. As the type IV pilus plays important roles in virulence, the ability of Pf phage to modulate its assembly has implications for P. aeruginosa pathogenesis.


Assuntos
Inovirus , Superinfecção , Humanos , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/metabolismo , Inovirus/metabolismo , Fímbrias Bacterianas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...